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Syllabus for Unit-l : Metric spaces: sequences in a metric space, Cauchy
sequences, Complete metric spaces, Cantor’s theorem.

Sequences in a metric space:

DEFINITION: A sequence in a metric space (X,d)is a function defined on the set of
natural numbers N with values in X and is specified by listing its values as
XX, Xgperennnn D SR or as {Xn }::1 or as {Xn} where X, is the image of n, ne N andis

known as the nth term of the sequence.

NOTE : The function stated above is not necessarily one-to-one and therefore, the range set
of the sequence may be finite or infinite whereas set of all terms of a sequence is always

infinite.
1

EXAMPLES: The range set of the sequence {—} in Ris L2,4,2,.......... {is infinite. The set
n

of all terms is {, 2,1, % ........... } which also infinite. Again the range set the sequence {(—1)”}

is {—1,1} which is finite. But the set of all terms of a sequence is infinite.

DEFINITION: Let{x,} be a sequence in the metric space (X,d). Let
{nl,nz,nS, ........... N | PSR } be a strictly increasing sequence of natural numbers. Then the
sequence J[Xnk} ie, {an,xnz,xn3, ......... 9 Xpy rsesseens } is called a subsequence of the sequence
{x,}.

EXAMPLES:

DEFINITION: A sequence {Xn} in @ metric space (X,d) is said to converge to a point X e X,
if for given £>0, we can find a positive integer m (depending on €) such that
d(x,,X) <&, whenever n>m.

We then write d(x,,X) > 0as n— o or, Limx, =X or, X, > X as N —>o.

n—owo

OR



Equivalently, a sequence {Xn} in @ metric space (X,d) is said to converge to a point

xe X, if for given £ >0 , we can find a positive integerm ( depending on &) such that
X, € S(X,&) forall n>m where, S(X, &) is a sphere of radius & centred at X.

1
EXAMPLE: The the sequence {—} converge to 0.
n

DEFINITION (Cauchy Sequence): A sequence {Xn} in a metric space (X,d) is said to be a

Cauchy sequence or Fundamental sequence iff for each &£ >0 there exists a positive
integer p such that d(x,,X,) <e& forall n,m> p.Thatis, d(x,,X,,) >0 as m,n > .

THEOREM 1.1: Every convergent sequence is Cauchy sequence. Converse is not necessarily
true.

Proof: Let {x, } be a convergent sequence in the metric space (X,d)and let x, — x. Hence
for given & >0, there exists a positive integer p such that d(X,, X) < % , d(x,,,X) < gfor all

NM2 P (2)
Now d(X,,X,) <d(X,,X)+d(x,X,)[since dis metric. Triangle inequality holds]

=d(x,,X)+d(x,,X)[since dis metric.Symmetric property holds]
£ €

<<i+fibya
>t [by(1)]

=g Vnm=p
Thus d(x,,X,) <& for all n,m> p. Hence {x,} is a Cauchy sequence in the metric space
(X,d).

To show converse is not true let us consider the space X =(0, 1] of the real line with usual

1
metric. Let us consider the sequence {Xn}:{—},n e N. For a given &>0, we choose a
n
e 2 1 1
positive integer p(> =), d(X,,Xp) =X, = Xu| <[X,| +[Xn| ==+=,¥Yn,m > p
& n m

& &
=d(x,,X,)<=—+=¥vnm2
(Xq: Xpn) ) p
=d(x,,X,)<& vYnmz=p

1
Hence {Xn } = {—}, ne N is a Cauchy sequence in X =(0, 1].
n
1 L .
But {Xn}= {—}, ne N, converges to 0 which is not a point of X =(0, 1].
n

1
Thus {Xn } = {—} is a Cauchy sequence in X but does not converge to any pointin X .
n



THEOREM 1.2: Let{x,} be a Cauchy sequence in the metric space (X,d). If {x, } possesses
a convergent subsequence {Xnk } converging to X, then the sequence {Xn} also converges

to X.
Proof: Let {Xnk}be a convergent subsequence of the Cauchy sequence {Xn}converges to

X e X . Then for each &> Othere exists a positive integer p such that d(Xx, ,X) <§ for all

Again as {Xn} is a Cauchy sequence, for each & > Othere exists a positive integer g such that
d(xn,xm)<§ forall nM>q....ccooeeennnnne. (2).

Let r = Max(p,q)
Then d(x,,x) <d(X,, X, )+d(X, ,X) [since d is metric. Triangle inequality holds]

& ¢
<—+—=¢foralln=r.
2 2

=d(x,,x)<e& for all n>r. Hence the Cauchy sequence converges to

xeX.
THEOREM 1.3: A Cauchy sequence {Xn } in a metric space (X : d) converges If and only if it

has a convergent subsequence {Xnk }
Proof: Let {Xn}be a cauchy sequence converges to X e X . Hence for given ¢ >0, there
exists a positive integer p such that d(x,,x) <& forall n> p and hence d(x, ,X) <¢ for all

n, = p. Therefore, the subsequence {Xnk } of the cauchy sequence {xn} convergesto Xxe X ..

Conversely, let {Xnk} be a convergent subsequence of the cauchy sequence {Xn} converges

to X e X . Then by previous theorem, the cauchy sequence {Xn} convergesto Xxe X.

Complete metric spaces

DEFINITION: A metric space (X,d)is said to be complete if every Cauchy sequence
in X converges to some pointin X .
The metric space (X,d)is called incomplete if it is not complete.

EXAMPLES ( complete metric spaces):
Ex-1. Any set X with discrete metric forms a complete metric space.
Solution : Let (X,d)be a metric space with discrete metric d such that

d(x,y) Z{%% X=y . Let {Xn} be a Cauchy sequence in the discrete metric space (X,d).
if xy

Then d(Xn,Xm)={9!i 5 =X
1if x, #X,

" Since as {X,} is a Cauchy sequence, for each & >Othere




exists a positive integer p such that d(x,,X,,) <% for all nm> p [taking ¢ = % ]. Then by

definition of discrete metric space d(x,,X,)=0V neN.
=X, =X, as n—oowhich shows that every Cauchy

sequence converges to a point of X which is also a term of the sequence. Hence discrete
metric space X is complete.

Ex-2. The real line R is complete.

Solution : Let {Xn}be a cauchy sequence in R. By the definition of Cauchy sequence for

each &> Othere exists a positive integer p such that d(x,,X,) <& for all n,m> p. Since
Ris a metric space with usual metric, we must have d(x,,X,) =[x, =X,/ <& ¥V nm=p.

But it follows from the Cauchy’s general principle of convergence of a sequence of real
numbers that the above situation implies the convergence of a sequence {Xn }to some point

X € R.Hence R is complete.
Ex-3. Prove that the space C[0,1]of all continuous real valued functions on [0,1|with the

metric d, defined by d(f,Q) = supﬂ f(x)— g(X)| ‘Xe [0,1]}, is a complete metric space.
Solution : Clearly, d(f,g) =sup{f(x)—g(¥)|: xe[0]}>0
Also d(f,g) =0 iff sup{f(x)—g(x)|:xe[0l]}=0
iff f(0)-9() =0V xefo]]
iff f()=9(0) Vv xelo]]
Iff f =g [non-negative property holds ]
Also d(f,g) =sup{f(x)—g(¥)|: x[01]}
=sup{g () — £ (| : x < [0.1]}
=d(g, f) [symmetric property holds ]
Also for any three functions f, g, h, we have, d(f,g) = Supﬂ f(x)— g(x)| 1Xe [O,l]}
= sup{ f (x) ~h(x) +h(x) - g(x)|: x e [0.1]}
<sup{ f ()~ h(x)|: x e [01]} +sup{h(x) - g(x)| : x € [0.1]}
=d(f,h)+d(h,g)
Thus d(f,g) <d(f,h)+d(h,qg) [ Triangle inequality holds]
Hence {C[0,1] d} is a metric space.
Let {fn} be a Cauchy sequence in C[O,l]. Then for each & >0there exists a positive
integer p such that d(f,,f ) <e&, forallnm>p.
= sup{f,(x) - f,(x)|:xe[01]}< &, forall n,m>p.
= ﬂfn(x)— f, (X)|}< g, for all nm>p and for all x 6[0,1]. Using Cauchy’s condition for
convergence, we can say that {fn} converges uniformly on [0,1]. If f,—> f thenf isalso

continuous on [0,1]. Therefore, the Cauchy sequence {f,} convergesto f €C[0,1].



Hence C[0,1] is a complete metric space.

EXAMPLES ( incomplete metric spaces):
Ex-1. The space X =(0, 1] of the real line with usual metric d(x,y) =|x—Y|, Vx,y e X is
not complete.

. . 1 .
Solution : Let us consider the sequence {Xn}: {—},n e N. For a given ¢ >0, we choose a
n

positive integer p(> E), d(X,, Xpn) =X, —Xm|£|xn|+|xm|:%+%,Vn,m2 p
&

E £
=d(x,,X,)<=+=V¥nm>
Xy Xe) 7t P
=d(x,,X,)<e vnm=p.

1
Hence {Xn } = {—} n e N is a Cauchy sequence in X =(0, 1].
n

1
But {xn}= {—}, ne N, converges to 0 which is not a point of X =(0, 1].
n

1
Thus {xn } = {—} is a Cauchy sequence in X but does not converge to any pointin X .
n

Hence X =(0, 1] is not complete.
Ex-2. The set Q of all rational numbers with usual metric d(x,y)=|x—y|, VX,y € Q is not

complete.
Solution : With usual metric d(x,y)=|x-y

, VX, ¥y €Q is metric space. Let us consider the

sequence {X, | = {3%} This is a Cauchy sequence in Q. {x, | = {3%} convergesto 0€Q.

Again let us consider a sequence {xn}: {1+ 1} } This is a Cauchy sequence in Q but this
n

sequence {Xn}:{‘:l+ E} } converge to a point e ¢ Q. So every Cauchy sequence in Q is
n

not convergent. Hence (Q,d) is not complete metric space.
DEFINITION : A sequence {Fn} = {Fl,FZ,Fs, .............. } of sets is said to be nested if
FoF oF o..... DOF, D Thatis,if F, o F,,;, VneN

n+1



CANTOR INTERSECTION THEOREM

CANTOR INTERSECTION THEOREM : If {F

subsets of metric space (X,d) such that 5(F,)— Oas n— o, then X is complete iff

n

} is a nested sequence of non-empty closed

ﬂ F, consists of exactly one point, where 6 (Fn ) denotes the diameter of F,.
n=1

Proof: The condition is necessary
Let (X,d)be a complete metric space and let {F,} = {F,,F,,Fy i coee | be a nested of

non-empty closed subsets of X with 5(F,)—0as n—o. We shall show that [F,
n=1

contains exactly one point.

Since each F, (n € N);t @, we can construct a sequence {Xn } by choosing X;, X,, X3,..... € F, .
Thatis, x, eF, , Vvn=123,......... As 5(Fn)—>0 as n— oo, for given e>0there exists
meN such that 5(F,)<e for all n>m........ (1). Since {F,} is nested, F, c F, for all

n>m.Hence X, e F,, foralln>=m.

=d(x,,X,)<o(F,), forall n>m.

=d(x,,X,)<¢,forall n>m. [using (1) ].

Hence, {Xn} is a Cauchy sequence inF,. That is, in X . Since, (X,d) is complete metric
space (given), the sequence {Xn} must be convergent. Let it converges to x e X . That is,

X, — Xas N —oo. We shall show that X e ﬂ F, . If possible, let x ¢ ﬂ F, . This implies that
n=1 n=1

X should not lie in some of the sets F,F,, F;,.ccccce . Let X ¢ F, . Since F,is closed and
xgF., d(x,F)=inf{d(x,y):yeF }>0.Let d(x,F,)>r.Then d(x,y)>rforall yeF,.
Therefore, S(x,£)and F, are disjoint. Now n>k =F, cF, = {X, %, X3,.) © F,
[since X, e F, Vn=123,........ ]

= X, & S(X,%) which is not possible since {x,} convergesto xe X .

Hence X e ﬂ F, showing that ﬂ F, is non-empty.

n=1 n=1

In order to prove that ﬂFn contains exactly one point, let us suppose in contrary that
n=1

ﬂ F, contains two points X and y.
n=1

Then 8(F) >d(x,y) , o(F,) >d(x,y), o(F) >d(X,¥),cnerrnnnee.



Since dis metric and so d(x,y) >0, OJ(F,) does not tend to O which contradicts the fact

5(F,)— 0as n — . Therefore, ﬂ F, contains exactly one point.
n=1

The condition is sufficient

Let us suppose that the given condition is sufficient. We shall show that X is complete. Let
{x,} be a Cauchy sequence in X .

Let us consider for each Ne N, A, ={X,, X1, Xy, pseeersere voee ;.

Thatis, A = {X,, Xy, Xgerereerrsvorns b A, =Xy, Xg, Xy pevreens s A = {Xg0 Xy Xgpeverenns oo | —
Obviously, A DA, DA D and we have, E QE.. QE.. i SR

Since, {x, | is a Cauchy sequence and 5(A,)— 0as n— o, we have, §(E)—> Oas n—> .

So {An}= {EEE ........... } is a nested sequence of closed and non-empty sets in X,

where 5(@)—) Oas n— . So by hypothesis there exists an X e X such that x e ﬂx

n=1
Now X, €A cA =X, €A, Also xe A, . Therefore, d(x,x,) < S(A,). Since 5(E)—> 0,
d(x,x,) >0 as n—w. That is, X, — Xas N—oo. Hence the Cauchy sequence {x, }
converges to Xe X . As {Xn} is arbitrary it follows that every Cauchy sequence in (X,d)

converges. Hence (X,d) is complete metric space.

INSTRUCTION FOR STUDENTS :

NOTE: Definition of Cauchy sequence and theorems related to Cauchy sequence, Definition
of Complete metric space and examples related to Complete metric spaces and Incomplete
metric spaces are important .
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Syllabus for Unit-Il : Continuity: Continuous mappings, Sequential criterion
and other characterizations of continuity, Uniform continuity,
Connectedness: Connected subsets of R. Compactness: Sequential
compactness, Heine-Borel property, totally bounded spaces, finite
intersection property(FIP), continuous functions on compact sets.
Homeomorphism. Contraction mappings, Banach fixed point theorem and its
applications to ordinary differential equations.

Functions/Mappings
DEFINITION : Let X and Y be two non-empty sets. If there is a rule of correspondence
f which corresponds each element X e X a unique element y €Y, then f is said to be a

function or mapping or a map from XtoY orf mapsX intoY .
In symbol we write f: X — Y . In such a case the set X is called the Domain of f and the
set Y is called Codomain of f.If f relates xe X with yeY , we write y = f(x). Here X

is called preimage of y under f and Y is called image of X under f .

Continuous mappings

DEFINITION : Let (X,d) and (Y,d’) be two metric spaces. A function f :(X,d) — (Y,d")is

said to be continuous at a point a < X, if and only if for all £ >0, chosen arbitrarily, there



exists a d(> 0) ( depending on ¢ and a) such that d(x,a) <0 = d'(f(x), f(a)) <. Thatis,
xeS,(a,0)= f(x)eS,(f(a)e).

The function f is said to be continuous on (X,d) if and only if it is continuous at each point
of X.

REMARKS : It is clear that a function f :(X,d) — (Y,d")is continuous at a point ae X, if
and only if for all £ >0, chosen arbitrarily, there exists a (> 0) ( depending on ¢ and a)
such that (S, (a,0)) S, (f(a),¢).

Sequential criterion of continuity

THEOREM 2.1: Let (X,d) and (Y,d') be two metric spaces. A function
f:(X,d)—> (Y,d")is said to be continuous at a point x < X, if and only if for all
sequences {Xn} of elements of X converging to the point X in (X,d), the sequences

{f(x,)} of elements of Y converge to f(x) in (Y,d’).

Proof : The condition is necessary
Let us suppose that the function f :(X,d) — (Y,d") is continuous at a point X e X . We

shall show that X, > x= f(Xx,) = f(X) as n > . Let & >0, be arbitrarily chosen. Since
f is continuous at the point x, there exists a Jd(>0) such that
d(x,,x)<o0=d'(f(x,), f(x))<e&. Since x, > X as Nn—>xin (X,d), corresponding to
0(> 0) there exists a natural number m depending on 0 such that n>m=d(x,,X)<0.
Combining the two results above we conclude that n>m=d'(f(x,), f (X)) <&, where m
is a natural number depending on 0 and hence dependent on & > 0. This implies {f (Xn)}
convergesto f(x) in (Y,d’).
The condition is sufficient

We shall show that if for all sequences {Xn} converging to the point X in (X,d) the
corresponding sequences {f(xn)} converge to f(x) in (Y,d'), then f is continuous at the

point X. If possible let f is not continuous at the point X. Then there exists atleast one
£ >0 such that for all 9(>0) d(x’,x)<d but d'(f(x’), f(x))> ¢ for at least one x'e X.

1
Let us consider a sequence of 9'sgiven by 0 =— for all ne N. So, corresponding to each
n

natural number n, there exists X, € X such that d(x,,X) < 1 but d'(f(x'), f(x))>¢. This
n

implies f(x,)does not tend to f(x) in (Y,d’) although x, — X as n—0in (X,d), which

is a contradiction to our hypothesis. Hence f must be continuous at the point x.



REMARKS : The above theorem shows that convergence of sequence of points remains
preserved under a continuous map.

From the above theorem the following theorem follows:

THEOREM 2.2 : Let (X,d) and (Y,d’) be two metric spaces. A function
f:(X,d) —> (Y,d")is continuous if and only if for any x € X and for all sequences {Xn}

X converging to x in (X,d), the sequences {f (x,)} converge to f(x) in (Y,d").

Other characterizations of continuity :

THEOREM 2.3: Llet (X,d) and (Y,d') be two metric spaces. A function
f:(X,d) — (Y,d")is continuous if and only if for any open set G in (Y,d’), f(G)is
openin (X,d).

Proof : Let us assume f :(X,d) — (Y,d") is continuous and a set G is open in (Y,d’). We
shall show that its inverse image f *(G) is open in (X,d). If f(X)nG=¢, then
f'(G)=¢ and remains nothing to prove. Let f(X)NG=¢, then f*(G)=¢.
So, there exists atleast one xe f *(G). This implies f(x)eG. Since G is open
f (x) is an interior point of the set G. So, we can find an & > Osuch that S, (f(x),s) cG.
Since f is continuous at the point x, there exists a 0(>0) such that
d(x,x)<o=d'(f(x),f(x))<e. That is, X'€S, (x,0)= f(x") €S, (f(x),&).
That is, f(S,(x,0))cS,(f(x),e)cG. That is, xeS,(x,0)c f*(G). Thus x s
an interior point of the set f*(G) in (X,d). Since x e f (G)is arbitrarily chosen it
follows that f (G)is openin (X,d).

Conversely, we assume that the inverse image of every open set G in (Y,d') is open in
(X,d). We shall show that f is continuous. We choose any xe X, then f(X)is
uniquely determined. For & >0 chosen arbitrarily, S, (f(X),&) is an open set in (Y,d'). By
proposition f (S, (f(x),&)) is openin (X,d). Now, x e f (S, (f(x),&)). So, there exists
a 0(>0) such that xeS, (x,0)c f(S,(f(x),e)). This implies,
f(S, (x,0)) = (S, (f(X),&)). That is, d(x',x)<o=d'(f(x),f(x))<e where 0(>0)
depends on ¢ >0. Consequently, f is continuous at X in (X,d). Since X is chosen

arbitrarily, f is continuous.

THEOREM 2.4: Let (X,d) and (Y,d') be two metric spaces. A function
f:(X,d) > (Y,d")is continuous if and only if for any closed set F in (Y,d’), f(F)is
closed in (X,d).



Proof : Let us assume f :(X,d) — (Y,d") is continuous and a set F is closed in (Y,d'). So,
Y \Fis openin (Y,d’) and therefore, f (Y \F) is openin (X,d) (since f is continuous ).
Now, f *(F)=X\f(Y\F)

= X\f*(F)=f(Y\F). So, = X\ f™*(F) is open in (X,d). Consequently,
f(F) is closed in (X,d).

Conversely, we assume that for all sets F closed in (Y,d’), f *(F)is closed in (X,d). We
shall that f is continuous. Let G be any open setin (Y,d’). Y \G is closed in (Y,d’) hence
f (Y \G) isclosed in (X,d). Since f*(Y\G)= X\ f(G), it follows that X \ f *(G) is

Closed in (X,d).That is, f(G) is open in (X,d). Therefore, f is continuous.

THEOREM 2.5: Let (X,d) and (Y,d’) be two metric spaces. A function
f :(X,d) = (Y,d") is continuous if and only if for any set Ac X , f(CIA) < CI(f(A)).

THEOREM 2.6: Llet (X,d) and (Y,d') be two metric spaces. A function
f :(X,d) — (Y,d") is continuous if and only if for any set Ac X, Cl{f ‘1(B)}c f (CIB).

Uniform continuity,

DEFINITION : Let (X,d) and (Y,d’) be two metric spaces. A function f :(X,d) — (Y,d")is
said to be uniformly continuous on (X,d) if and only if corresponding to & >0, chosen
arbitrarily,  there exists a 0(>0)( depending on ealone) such that
d(x,X,) <0=d"(f(x), f(x,)) <e V¥x,X, € X

THEOREM 2.7: Let (X,d) and (Y,d’) be two metric spaces and a function
f:(X,d) > (Y,d")is a uniformly continuous function. If {xn}is a Cauchy sequence in
(X,d)then {f(x,)} is a Cauchy sequence in (Y,d’).

Proof : Let & >0, be arbitrarily chosen. Since , f is uniformly continuous in (X,d), there

exists a O0(>0)( depending on ealone) such that d(x,Xx,)<d=d'(f(x),f(x,))<e

VX[, X, € X i, (1). Since {Xn}is a Cauchy sequence in (X,d), corresponding to
0(> 0) there exists a positive integer m=m(d) such that n>m=d(x,,x,,,) <0, for all
PEN o (2). Combining (1) &(2) we get, n>m=forall peN,d(x,,X,,,) <0

=d'(f(x,), f(X,.,)) < &. This implies that {f(x,)} is a Cauchy sequence in (Y,d’).



Examples of continuous functions:

1

EXAMPLES 2.1: Show that the function f(X)=—mapping the real line into itself is
X

continuous everywhere on the real line except at the origin.

1
EXAMPLES 2.2: Show that the function f(X) == mapping the real line into itself given by
X

X, X . 1
f(x)= €Q — continuous only at the point — .
1- x,otherwise 2

EXAMPLES 2.3: Let (X,d) be a metric space and Aand B are two non-empty disjoint

closed sets in X . Prove that there exists a continuous function f : X — Rsuch that

ILxeA
f(x) =4 —+——.
() {—1,X€B

CONNECTEDNESS

DEFINITION : Let (X,d) be a metric space and Aand Bare two subsets of X . The sets

Aand B are said to be separated in if and only if neither has a point in common with the
closure of another. Thatis, ANCI(B)=¢, CI(A)nB=4¢.

These two conditions can be expressed by {AmCI(B)}u{CI(A) N B}: @ . This is known as
“Hausdorff-Lennes condition” .

NOTE : Two sets Aand B are may be separated in one metric space but not in other.
For example, let us consider the set R of all real numbers along usual metric. Then let us
consider two sets {0}and (0,1). Now, {0}~CI((0,))={0}~[01]= {0} = ¢.

Again, let us consider the set R of all real numbers along with discrete metric. Let us

consider two sets {O}and (0,1). The open sphere S(O,%j with centre 0 and radius

1
~contains no point of the set(0l). Therefore, in this metric space

Cl(fo})n(01)={0}~(01)=¢, {0}nCI((0,1)={0}~(01)=¢ and hence the sets {0}and

(0,1) are separated in this metric space.

THEOREM 2.8: Let a set G is open in a metric space (X : d). If G is expressed as the union

of two non-empty separated sets Aand B. Then both the sets Aand B are open in
(X,d).



Disconnected Spaces and Disconnected Sets:

DEFINITION : A metric space (X,d) is said to be disconnected if and only if it can be
expressed as the union of two non-empty separated sets. That is, X = Au Bwhere
A#¢,B#¢ and ANCI(B)=¢, CI(A)nB=¢.

By theorem 2.8, both the sets Aand B are openin (X,d).

RESULT : A metric space (X,d) is disconnected if and only if it can be expressed as the
union of two non-empty disjoint open sets.
RESULT : A metric space (X,d) is disconnected if and only if it can be expressed as the

union of two non-empty disjoint closed sets.

DEFINITION : A non-empty subset A of a metric space (X : d) is disconnected if and only if it

can be expressed as the union of two non-empty separated sets. That is, A=A U A, where

A=A #¢and ANCI(A)=¢, CI(A)NA, =¢.

THEOREM 2.8: Let (X , d) be a metric space. Then the following conditions are equivalent :
(i) (X,d) is disconnected.

(i) X can be expressed as the union of two non-empty disjoint closed sets in (X ,d )

(iii) X can be expressed as the union of two non-empty disjoint open sets in (X ,d )

(iv) there exists a non-empty proper subset of X , which is both open and closed in the
metric space(X,d).

Connected Spaces and Connected Sets:

DEFINITION : A metric space (X,d) is said to be connected if and only if X is not
expressible as the union of two non-empty separated sets in (X,d). In other words, (X,d)

is connected if and only if X is not disconnected.

DEFINITION : A non-empty subset A of a metric space (X,d) is connected if and only if it

cannot be expressed as the union of two non-empty separated sets.

THEOREM 2.9: A metric space (X , d) is connected if and only if X and ¢ are the only sets
which are both open and closed in (X ,d).

Proof : Let X and ¢ are the only sets which are both open and closed in (X,d). Thatis, X is
the only non-empty set which is both open and closed in (X,d). We shall prove that (X,d)



is connected. If possible, let X is disconnected. The there exists a disconnection (A, B) of
(X,d). Obviously, both the sets Aand B are non-empty. Since X is open, we find both the
sets Aand B are open. Similarly, both the sets Aand B are closed. Thus there exists a non-
empty proper subset Aof X which is both open and closed in (X,d). This is a
contradiction to our hypothesis that X is the only non-empty set which is both open and
closed in (X,d). Therefore, (X,d) is connected.

Conversely, let (X,d) is connected. We shall show that X is the only non-empty set which
is both open and closed in (X,d). If possible, let there exists a non-empty proper subset A
of X which is both open and closed in (X,d). Then its complement A® =X \ A is non-
empty. Since A is both open and closed A® is both closed and open. Therefore, (X,d) is
disconnected with a disconnection (A, AC), which contradicts our assumption. Therefore,
X is the only non-empty set which is both open and closed in (X,d).

THEOREM 2.10: If two connected sets are not separated, their union is connected.
THEOREM 2.11: In a metric space the union of two non-disjoint connected sets is
connected.

THEOREM 2.12: If every two points of a set A in a metric space (X , d) are contained in
some connected subset of A, then A is connected set.

DEFINITION : Let (X,d) be a metric space. If corresponding to every paira,b of distinct
points of X , there exist separated sets A and B in (X,d) with a< Aand b B, then the

space (X,d) is said to be totally disconnected.

CONNECTED SETS IN THE REAL LINE :

It is clear that like other spaces, the null set ¢ and singleton sets are connected in the real

line.

THEOREM 2.13: A set A — Rwith atleast two points is connected in the real line if and
only if A is an interval.

Proof : Let us assume that A is an interval. We shall show that A is connected. Let us
assume, if possible, A is disconnected. Then there exist two non-empty sets B and C both
open and closed in the subspace Asuch that A=BuUC. Since Band C are non-empty
disjoint sets we choose any b e Band ¢ €C. Since the sets B and C are disjoint, the points
b and care distinct. Thatis, b= c. Let b<c. Since A |s an interval and b,c € Ait follows

that b<x<c=xeA. So, [b,c]c A=BUC. Also, yel[b,c]=eitheryeBoryeCbut
not both. Let E =[b,c]nB. Now b e E. Since E is non-empty and bounded above E has a

finite supremum. Let u=SUpE. Then b<u <c. Since u=supE, no real number less than



U can be an upper bound of the set E. Consequently, corresponding to each &(>0),
however small, there exists a ve Esuch that u—&<v<u. Thus every neighbourhood
S(u,g) ofuin the real line contains a point of E. SinceE < B, we conclude that every

neighbourhood of U contains a point of B different from u. So U is a point of accumulation
of the set B . Since B is closed, we must haveu € B. Also u ¢ C ( Since the sets Band C are
disjoint). Hence u=#c. As b<u<c, it follows that u <c. Again for each ¢(>0), however
small, u+geC, if u+¢& <c. This implies every neighbourhood S(u,g) of the point U in the
real line contains some point of C different from u. Therefore, U is a point of accumulation
of the set C in the real line. Since the set Cis closed, we also have ueC . Thus ue BNC,
which contradicts that the sets B and C are disjoint. Therefore, A must be connected.

Conversely, if possible, let A is a connected subset of R containing at least two points but
A is not an interval. Then there exist three points X,Yy,zsuch that x,ze€ A, y ¢ Awhere

X<y <z.Now, the sets A =(—oo,y) and A, =(y,) re separated open sets in Euclidean
line. Let B, =A NA, B,=A,nA.Then B, c A , B, © A, and consequently B, and B,
are separated. As xe B, , ze B, both B, and B, are non-empty. Also A=B, UB, Hence
A has a disconnection (B,, B, ). This is a contradiction to the fact that A is a connected set.

Thus A is an interval.
EXAMPLE : Show that the set R of all real numbers is connected in the real line.

SOLUTION : If possible, let the set Ris disconnected in the real line and (A B) is a
disconnection of R. Then A, B are non-empty separated stes in thr real line which are
both open and closed. Since A, Bare non-empty, there exists at least one a, € A and

b, €B. Since A and Bare disjoint, a, #b,. So either a, <b,or a, >b,. Without loss of

a, +b
1 1 cR. Since

generality, let a, <b,. Let |, =[a,b]. Then |I1|:bl—a1>0. Now,

a, +b
R=AuUB, % belongs either to Aor to B or belong to both. Also since, ANB =g,

a, +b, a, +b

L e A, we shall consider the

can’t belong to both the sets A and B. If

interval {al erbl ,bl} . Let [az,bz]:{a1 erbl ,bl]That is, a, = al ;bl and b, =b,.

a, +b a, +b a, +b
If 171 € B, we shall consider the interval [al, ! 5 l] Let [a,,h,]= {al, L 5 1} . That
. a‘l +b1
is, a,=a and b,= > let 1,=[a,,b,]. Then clearly, 1, c Il and

b, —a . .
‘Iz =h, —a, :M. If we repeat this process, we must find intervals 1,1,, 15 ,.........
2



and so on. In every case, we select the end points a,and b, such that a, € A and b, € B.

Thus we get a sequence {I,} of bounded closed intervals, where | =[a,,b,]. Also

l,.,cl, forallneN.And, |I,

= (b, —an)=%(bl—al)—>0as n—o.Thus {I,} forms
a nest of closed intervals with diameter tending towards zero in the real line. Nested
Interval Theorem says that there exists one and only one point ¢ e{l, :neN}. It can
easily be seen that both the sequences {a,} and {b,} are convergent in the real line and
both converges to ¢. Since {a,}— A, cis a point of accumulation of the set A in the real

line. AsA is closed, ce A. Similarly, ce B. Thus AnB # ¢, which contradicts the
disconnection of the real line. Therefore, the set R of all real numbers is connected in the
real line.

EXAMPLE : Let (X,d) be a connected metric space and f :(X,d)— (Y,d"). Prove that
f (X) is a connected subset of Y .

SOLUTION : If possible, let the set f(X)is not connected in the metric space (Y,d’). Then
we can find a non-empty proper subset H of f(X) which is both open and closed in the
subspace f(X). SinceH is open and fis continuous, f *(H)is open in (X,d). Again
since H is closed and f is continuous, f (H) is closed in (X,d).

His proper subset of f(X)= f(X)\H=z¢= f(f(X)\H)=¢= f*(H)=4¢. Thus
f *(H)is a non-empty proper subset of X which is both open and closed in (X,d). So
(X,d) not connected, a contradiction. Hence f(X) must be connected in the metric space
(Y,d").

NOTE : In case f :(X,d) — (Y,d")is an onto continuous map and X is connected, then
Y = f(X) is connected.

COMPACTNESS

DEFINITION : Let X be a non-empty set. A family A= {Aa ‘o€ A} of subsets of X is said to
be a cover of X ifand onlyif X = U{A, :a € A}, where A is an index set.

* In such a case, we say that the family A={A_:a A} covers X .

DEFINITION : Let Y be a non-empty subset of the set X . A family B:{Ba o eA}of
subsets of X is said to be a cover of Y if and only if Y c u{Ba ‘ae A}, where A is an

index set.
* In such a case, we say that the family B={B, :a € A} covers Y .

* If there exists a subfamily B’ of B which also covers Y, we say that B'is a subcover of B.



*A cover is said to be a finite cover(respt. Countable) if it contains finite ( respt. Countable)
number of sets.

* If set in the family A={A_ :a  A}are all open sets in a metric space (X,d), A is said to
be an open cover of X in the metric space (X,d).

NOTE : When a family of subsets of X in a metric space (X,d) covers X, the metric

d plays no role. But in order to be an open cover of X for a family of subsets of X, d must
have role because, openness of a set depends on the underlying metric.
EXAMPLE : Show that the family A={A =(~n,n):ne N}, of bounded open intervals, is an

open cover of R.
EXAMPLE : Show that each one of the following families is an open cover of the real line:

() A ={-[x.x): x <R}

(i) A, = {(x,x+1): x e N}

(i) A, ={(n-Ln+1):nez}

DEFINITION : A metric space (X,d) is said to be a Lindel 0 f space if and only if every open

cover of X in the metric space (X, d)admits of a countable subcover.

THEOREM 2.14: ( Lindel 0 f Covering Theorem)
In the real line every open cover of a set has a countable subcover.

DEFINITION( Compact Space) : A metric space (X , d) is said to be a compact metric space if
and only if every open cover of X in the metric space (X : d)admits of a finite subcover.
DEFINITION( Heine-Borel Property) : A metric space (X,d) is said to satisfy Heine-Borel
Property if and only if every open cover of X in the metric space (X,d)admits of a finite
subcover.

DEFINITION( Compact Set) : Let Y be a non-empty set in a metric space (X,d). Then Y is

said to be a compact set if and only if every open cover of Y in the metric space (X , d)has a

finite subcover.
NOTE : It is to be noted that by means of open sets, we consider those sets which are open
in the metric space (X,d).

PROPERTIES OF COMPACT SPACES AND COMPACT SETS :
THEOREM 2.15: Every closed subset of a compact metric space is compact

NOTE : If in any metric space we can find at least one closed set which is not compact, we
can assert that the space is not compact.

EXAMPLE : Show that the real line is not compact.



SOLUTION : Let us consider the set Z of integers. We know that in the real line Z is closed.
The family A={-n,n):neN}is an open cover of Z in the real line since
Z cR=U{(-n,n):aeA}. Since A={(=n,n):neN}(cover of Z) has no finite subcover,
the set Z is not compact. So Z is closed but not compact in the real line. Consequently, the
real line is not compact.

THEOREM 2.16: In any metric space (X ,d ) every compact set is closed .

Combining the theorem 2.15 & theorem 2.16, we get the following theorem:

THEOREM 2.17: A subset F of a compact metric space (X , d)is compact if and only if it is
closed.

THEOREM 2.18: Every compact subset of a metric space is bounded.

HEINE BOREL THEOREM

THEOREM 2.19: ( Heine Borel Theorem ) Every closed and bounded set in the real line is
compact.
Converse of Heine Borel Theorem :_ Every compact set in the real line is both closed and
bounded.

FINITE INTERSECTION PROPERTY

A family A= {Aa Tae A} of non-empty sets is said to posses finite intersection property if
and only if every finite subfamily of A= {Aa ‘a e A} has non-empty intersection.

That is, for any arbitrary finite collection {A%,AO!2 Y S V. Y Aan} of members of
A={A, :a e A} wehave, \{A, 1i=123,...,nj#¢

EXAMPLE : The collection A={(— n,n): n eN}of open intervals satisfy finite intersection

property. If we consider any finite collection {(— n, nl), (— n,,n, ), (— ns,ns), ....... , (— n,, np)}of
open intervals in R then m{(— nr,nr): r=123,.... , p}:(— na,na)¢¢where
n, :min{nl,nz, ......... ,np}.

EXAMPLE : The collection B = {(n—l,n+1): ne Z}of open intervals does not satisfy finite
intersection property. If we consider the finite collection {(1,3), (35)} of Band we find
(L3)(35)=¢

THEOREM 2.19: A metric space (X , d) is compact if and only if every infinite family of non-
empty closed sets in (X , d) with finite intersection property has non-empty intersection.
Proof :



CONTINUITY AND COMPACTNESS :

THEOREM 2.20: Continuous image of a compact metric space is compact.

Proof : Let (X,d) be a compact metric space and f is a continuous mapping from (X,d)
into another metric space (Y,d'). If Y'=f(X)c<Y,then we are to prove that the setY'is a
compact subset of (Y,d’). Let A={A :a e A} be any open cover of Y'in (Y,d’). We are
to show that it has a finite subcover. By proposition Y’ =u{Aa a eA}. Hence we get,
X = 2= FHU{A, 1@ e All=U{f H(A,) 1@ € A (1)
Since for all € A, A, is open in (Y,d’) and f is continuous, it follows that f‘l(Aa) is
openin(X,d), forall & € A . Then from (1) it follows that {f T(A):ae A}is an open cover
of (X,d). Since (X,d) is compact, it has a finite subcover, say,

Therefore, continuous image of a compact metric space is compact.

NOTE : In case f :(X,d) — (Y,d")is an onto continuous map and (X , d) is compact, then
(Y,d’) is also compact.

NOTE : If f :(X,d) — (Y,d")is continuous map and A c X is a compact set in (X,d),
then f(A) Y is also compactin (Y,d’).

SEQUENTIALLY COMPACT SPACE

DEFINITION : A metric space (X,d) is said to be sequentially compact if and only if every
sequence in X has a convergent subsequence.
DEFINITION : A non-empty set A X is said to be sequentially compact if and only if every
sequence in A has a convergent subsequence.

EXAMPLE : In the real line the set R of all real numbers is not sequentially compact.
SOLUTION : Let us consider the sequence {Xn}in R defined by X, =n for all ne N. Clearly,

{Xn} has no convergent subsequence. Hence R is not sequentially compact.

EXAMPLE : In the metric space R with usual metric, the set (O,l)c R is not sequentially

compact.



1
SOLUTION : Let us consider the sequence {Xn}in R defined by X, =— for all ne N. {Xn}
n

has no subsequence which converges to any point in (0,1). Hence (O,l)is not sequentially
compact set.
NOTE : However, in the real line the closed interval [O,l]is sequentially compact set.

PROPERTIES OF SEQUENTIALLY COMPACT SETS

THEOREM 2.21: In a metric space a sequentially compact set is both bounded and closed.

THEOREM 2.22: A sequentially compact metric space is complete.

Proof : Let (X,d) be a sequentially compact metric space. In order to prove the theorem it
is sufficient to show that any Cauchy sequence {x, } in (X,d)converges in X . Since {x,} is
a Cauchy sequence in (X,d), corresponding to &(> 0), chosen arbitrarily, there exists a
positive integer N,, depending on ¢(>0), such that d(xn+p,xn)< g, for all peNand
n> N,. Since the metric space (X,d)is sequentially compact, the sequence {Xn}must have
a subsequence which converges in X . Let the subsequence be {Xnk }and X, —>XE€E X as
n, = . So, there exists a positive integer N,, depending on &(>0), such that
d(xnk,x)<g, whenever n, > N,. Let N = max{Nl,Nz}. Then for all n, >n> N we get,
d(x,,x)< d(Xn,Xnk )+ d(Xnk ,X)<g+5 —2¢. Therefore, the sequence{x,} converges to

X € X . Consequently, the metric space (X , d) is complete.

THEOREM 2.23: Every compact metric space is sequentially compact.

COMPACTNESS AND TOTAL BOUNDEDNESS

DEFINITION : Let (X,d)be a metric space and ¢ be an arbitrarily chosen positive quantity.
A non-empty subset A of X is said to be an & —netof (X,d), if the set of all open spheres
of radius ¢ with centresin A covers X .

This implies for any x e X, we can find at least one a< A, such that xe S(a,¢), that is,
d(a,x)<e.

1
EXAMPLE : In the real line the set Z of all integers is an 1—net but not a 5 net.

DEFINITION : Let (X,d)be a metric space. A non-empty subset A of X is said to be totally
bounded if and only if for every (> 0), the set A has a finite & —net.

This implies for any (> 0), a finite collection of open spheres of radius ¢ covers A.



THEOREM 2.24: A metric space (X , d) is totally bounded if and only if every sequence in

X has a Cauchy subsequence.

THEOREM 2.25: A metric space (X : d) is sequentially compact if and only if it is complete
and totally bounded.
Proof : Let the metric space (X,d) is complete and totally bounded. Since(X,d)is totally

bounded, every sequence {x,} in (X,d)has a Cauchy subsequence{y, }. Since(X,d) is
complete, any Cauchy sequence {yn} is convergent. So every sequence {Xn} in (X,d)has a
convergent subsequence. Therefore, the metric space (X , d) is sequentially compact.
Conversely, let the metric space (X,d) is sequentially compact. Then every sequence {Xn}
in (X,d) has a convergent subsequence {y,}. Since the sequencely,} satisfies Cauchy
property, by theorem 2.24, it follows that (X,d) is totally bounded.

Moreover, as the metric space (X,d) is sequentially compact, every sequence {x,} in
(X,d)has a convergent subsequence. Specifically, every Cauchy sequence {Xn} in
(X,d)has a convergent subsequence. We know that a Cauchy sequence is convergent if
and only if it has a convergent subsequence. Thus every Cauchy sequence in (X,d) is
convergent. Hence the metric space (X \ d) is complete.

COROLLARY : Let (X,d) be a complete metric space. Then a non-empty subset A of X is
compact if and only if A is totally bounded in (X,d).

THEOREM 2.26: Every sequentially compact metric space is compact.



