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UNIT-I                                                                                         Dr. Pradip Kumar Gain 

Syllabus for Unit-I : Metric spaces: sequences in a metric space, Cauchy 

sequences, Complete metric spaces, Cantor’s theorem.  

 

Sequences in a metric space : 

DEFINITION: A sequence in a metric space ( )dX , is a function defined on the set of     

natural numbers   with values in X and is specified by listing its values as 

..,.........,,.........,, 321 nxxxx or as  
=1nnx  or as  nx  where nx  is the image of n , n  and is 

known as the nth term of the sequence. 

NOTE : The function stated above is not necessarily one-to-one and therefore, the range set 

of the sequence may be finite or infinite whereas set of all terms of a sequence is always 

infinite. 

EXAMPLES: The range set of the sequence 








n

1
 in R is  ..,.........,,,1

4
1

3
1

2
1 is infinite. The set 

of all terms is ..,.........,,,1
4
1

3
1

2
1  which also infinite.  Again the range set the sequence n)1(−  

is  1,1−  which is finite. But the set of all terms of a sequence is infinite. 

DEFINITION: Let nx  be a sequence in the metric space ( )dX , . Let 

 .,...........,,.........,, 321 knnnn  be a strictly increasing sequence of natural numbers. Then the 

sequence  
knx  ie,  ,..........,,.........,,

321 knnnn xxxx  is called a subsequence of the sequence 

 nx .  

EXAMPLES: 

DEFINITION:  A sequence  nx  in a metric space ( )dX ,  is said to converge to a point Xx , 

if for given 0 , we can find a positive integer m  (depending on ) such that 

),( xxd n , whenever mn  . 

We then write 0),( →xxd n as →n  or, xxLim n
n

=
→

 or, xxn →  as →n . 

OR 



Equivalently, a sequence  nx  in a metric space ( )dX ,  is said to converge to a point      

Xx , if for given 0  , we can find a positive integer m ( depending on  ) such that 

),( xSxn   for all mn   where, ),( xS  is a sphere of radius   centred at x . 

EXAMPLE: The the sequence 








n

1
 converge to 0. 

DEFINITION (Cauchy Sequence): A sequence  nx  in a metric space ( )dX ,  is said to be a 

Cauchy sequence or Fundamental sequence iff for each 0  there exists a positive 

integer p  such that ),( mn xxd  for all pmn , . That is, 0),( →mn xxd  as →nm, . 

THEOREM 1.1:  Every convergent sequence is Cauchy sequence. Converse is not necessarily 

true. 

Proof: Let nx  be a convergent sequence in the metric space ( )dX , and let xxn → . Hence 

for given 0 , there exists a positive integer p  such that 
2

),(


xxd n  , 
2

),(


xxd m for all 

pmn , . ……………..(1) 

Now ),(),(),( mnmn xxdxxdxxd + [ since d is metric . Triangle inequality holds]  

                          ),(),( xxdxxd mn += [ since d is metric . Symmetric property holds] 

                          
22


+ [ by (1) ] 

                           = pmn  ,  

Thus ),( mn xxd  for all pmn , . Hence  nx  is a Cauchy sequence in the metric space 

( )dX , . 

To show converse is not true let us consider the space =X (0, 1] of the real line with usual 

metric. Let us consider the sequence   








= n
n

xn ,
1

. For a given 0 , we choose a 

positive integer )
2

(


p , pmn
mn

xxxxxxd mnmnmn +=+−= ,,
11

),(  

                             pmnxxd mn + ,
22

),(


 

                              ),( mn xxd   pmn  ,  

Hence  








= n
n

xn ,
1

 is a Cauchy sequence in =X (0, 1]. 

But    








= n
n

xn ,
1

, converges to 0 which is not a point of =X (0, 1].  

Thus  








=
n

xn

1
 is a Cauchy sequence in X but does not converge to any point in X . 



THEOREM 1.2:  Let nx  be a Cauchy sequence in the metric space ( )dX , . If  nx possesses 

a convergent subsequence  
knx  converging to x , then the sequence   nx  also converges 

to x . 

Proof: Let  
knx be a convergent subsequence of the Cauchy sequence nx converges to 

Xx . Then for each 0 there exists a positive integer p  such that 
2

),(


xxd
kn  for all 

pnk  ……………..(1). 

Again as  nx  is a Cauchy sequence, for each 0 there exists a positive integer q such that 

2
),(


mn xxd  for all qmn , ………………….(2). 

             Let ),( qpMaxr =  

Then ),(),(),( xxdxxdxxd
kk nnnn +  [ since d  is metric . Triangle inequality holds] 

                         

=+

22
 for all rn  . 

                          ),( xxd n  for all rn  .  Hence the Cauchy sequence converges to 

Xx . 

THEOREM 1.3:   A Cauchy sequence nx in a  metric space ( )dX ,  converges If and only if it 

has   a convergent subsequence 
knx . 

Proof: Let  nx be a cauchy sequence converges to Xx . Hence for given 0 , there 

exists a positive integer p  such that ),( xxd n for all pn   and hence ),( xxd
kn  for all 

pnk  . Therefore, the subsequence 
knx  of the cauchy sequence  nx  converges to Xx . 

Conversely, let  
knx  be a convergent subsequence of the cauchy sequence  nx  converges 

to Xx . Then by previous theorem, the cauchy sequence  nx  converges to Xx . 

Complete metric spaces 
DEFINITION: A metric space ( )dX , is said to be complete if every Cauchy sequence 

in X converges to some point in X . 

The  metric space ( )dX , is called incomplete if it is not complete. 

 EXAMPLES ( complete metric spaces): 

Ex-1.   Any set X with discrete metric forms a complete metric space. 

Solution : Let ( )dX , be a metric space with discrete metric d  such that 

yx

yx

if

if
yxd



=





=
1

0
),( . Let nx  be a Cauchy sequence in the discrete metric space ( )dX , . 

Then 
mn

mn
mn

xx

xx

if

if
xxd



=





=
1

0
),( . Since as  nx  is a Cauchy sequence, for each 0 there 



exists a positive integer p such that 
2

1
),( mn xxd  for all pmn ,  [taking 

2

1
= ]. Then by 

definition of discrete metric space 0),( =pn xxd  n .  

                                                               
pn xx →  as →n which shows that every Cauchy 

sequence converges to a point of X which is also a term of the sequence. Hence discrete 

metric space X is complete. 

Ex-2.   The real line R  is complete. 

Solution : Let  nx be a cauchy sequence in R . By the definition of Cauchy sequence for 

each 0 there exists a positive integer p such that ),( mn xxd  for all pmn , . Since 

R is a metric space with usual metric, we must have −= mnmn xxxxd ),(    pmn , . 

But it follows from the Cauchy’s general principle of convergence of a sequence of real 

numbers that the above situation implies the convergence of a sequence  nx to some point 

Rx . Hence R  is complete. 

Ex-3.  Prove that the space  1,0C of all continuous real valued functions on  1,0 with the 

metric d , defined by   1,0:)()(sup),( −= xxgxfgfd , is a complete metric space. 

Solution : Clearly,    01,0:)()(sup),( −= xxgxfgfd  

Also 0),( =gfd  iff     01,0:)()(sup =− xxgxf  

                              Iff  0)()( =− xgxf     1,0x  

                             Iff   )()( xgxf =           1,0x  

                             Iff   gf =   [ non-negative property holds ] 

Also   1,0:)()(sup),( −= xxgxfgfd  

                         1,0:)()(sup −= xxfxg  

                       ),( fgd=   [ symmetric property holds ] 

Also for any three functions f , g , h , we have,   1,0:)()(sup),( −= xxgxfgfd  

                                                                                             1,0:)()()()(sup −+−= xxgxhxhxf  

                                                                  1,0:)()(sup − xxhxf   1,0:)()(sup −+ xxgxh   

                                                                ),(),( ghdhfd +=  

                                         Thus ),(),(),( ghdhfdgfd + [ Triangle inequality holds] 

Hence   dC ,1,0  is a metric space. 

Let  nf  be a Cauchy sequence in  1,0C . Then for each 0 there exists a positive 

integer p  such that ),( mn ffd , for all pmn , . 

   − 1,0:)()(sup xxfxf mn , for all pmn , .  

  − )()( xfxf mn , for all pmn ,  and for all  1,0x .  Using Cauchy’s condition for 

convergence, we can say that  nf  converges uniformly on  1,0 . If ffn →  then f  is also 

continuous on  1,0 . Therefore, the Cauchy sequence  nf  converges to  1,0Cf  .  



Hence  1,0C  is a complete metric space. 

 

EXAMPLES ( incomplete metric spaces): 

Ex-1.  The space =X (0, 1] of the real line with usual metric yxyxd −=),( , Xyx  , is 

not complete. 

Solution : Let us consider the sequence   








= n
n

xn ,
1

. For a given 0 , we choose a 

positive integer )
2

(


p , pmn
mn

xxxxxxd mnmnmn +=+−= ,,
11

),(  

                             pmnxxd mn + ,
22

),(


 

                              ),( mn xxd  pmn  , .   

Hence  








= n
n

xn ,
1

 is a Cauchy sequence in =X (0, 1]. 

But    








= n
n

xn ,
1

, converges to 0 which is not a point of =X (0, 1].  

Thus  








=
n

xn

1
 is a Cauchy sequence in X but does not converge to any point in X . 

Hence =X (0, 1] is not complete. 

Ex-2. The set Q  of all rational numbers with usual metric yxyxd −=),( , Qyx  ,  is not 

complete. 

Solution : With usual metric yxyxd −=),( , Qyx  ,  is metric space. Let us consider the 

sequence  








=
nnx

3

1
. This is a Cauchy sequence in Q .  









=
nnx

3

1
 converges to Q0 .  

Again  let us consider a sequence  
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n

n
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x
1

1 . This is a Cauchy sequence in Q  but this 

sequence  
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n
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x
1

1  converge to a point Qe . So every Cauchy sequence in Q  is 

not convergent. Hence ),( dQ  is not complete metric space. 

DEFINITION : A sequence    nF  =  .....,.........,, 321 FFF  of sets is said to be nested if 

....................321  nFFFF That is, if 1+ nn FF  n  

 

 

 

 

 



CANTOR INTERSECTION THEOREM 
 

CANTOR INTERSECTION THEOREM : If  nF  is a nested sequence of non-empty closed 

subsets of metric space ( )dX ,  such that ( ) 0→nF as →n , then X is complete iff 




=1n

nF consists of exactly one point, where ( )nF denotes the diameter of nF . 

 

Proof:                                              The condition is necessary 

Let ( )dX , be a complete metric space and let   nF  =  .....,.........,, 321 FFF  be a nested of 

non-empty closed subsets of X with ( ) 0→nF as →n . We shall show that 


=1n

nF  

contains exactly one point.  

Since each  ( ) nFn , we can construct a sequence  nx by choosing nFxxx ,......,, 321 . 

That is, nn Fx   , ..,.........3,2,1=n  As ( ) 0→nF  as →n , for given 0 there exists 

m  such that ( )nF  for all mn  …………..(1). Since  nF  is nested, mn FF   for all 

mn  . Hence mn Fx  , for all mn  .  

)(),( mmn Fxxd  , for all mn  . 

 ),( mn xxd , for all mn  . [ using (1) ].  

Hence,  nx  is a Cauchy sequence in nF . That is, in X . Since, ( )dX ,  is complete metric 

space (given), the sequence  nx  must be convergent. Let it converges to Xx . That is, 

xxn → as →n . We shall show that 


=


1n

nFx . If possible, let 


=


1n

nFx . This implies that 

x  should not lie in some of the sets .......,.........,, 321 FFF  Let kFx . Since kF is closed and 

kFx ,   0:),(inf),( = kk FyyxdFxd . Let rFxd k ),( . Then ryxd ),( for all kFy . 

Therefore, ),(
2
rxS and kF  are disjoint. Now kn    kn FF      kFxxx  ,.....,, 321            

[ since nn Fx   ,........3,2,1=n ] 

),(
2
r

n xSx   which is not possible since  nx  converges to Xx .  

Hence 


=


1n

nFx showing that 


=1n

nF is non-empty.  

In order to prove that 


=1n

nF contains exactly one point, let us suppose in contrary that 




=1n

nF contains two points x  and y .  

Then ),()( 1 yxdF   , ),()( 2 yxdF  , ),()( 3 yxdF  ,……………….  



Since d is metric and so 0),( yxd ,  )( nF  does not tend to 0 which contradicts the fact 

( ) 0→nF as →n . Therefore, 


=1n

nF contains exactly one point. 

The condition is sufficient 

Let us suppose that the given condition is sufficient. We shall show that X  is complete. Let 

 nx  be a Cauchy sequence in X .  

Let us consider for each n ,  .....,.........,, 21 ++= nnnn xxxA .  

That is,  .....,.........,, 3211 xxxA = ,  .....,.........,, 4322 xxxA = ,  .....,.........,, 5433 xxxA = ,……… 

Obviously, ...............321  AAA  and we have, .................. 321  AAA  

Since,  nx  is a Cauchy sequence and ( ) 0→nA as →n , we have, ( ) 0→nA as →n . 

So    ..,.........,, 321 AAAAn =  is a nested sequence of closed and non-empty sets in X , 

where ( ) 0→nA as →n . So by hypothesis there exists an Xx  such that 


=


1n

nAx . 

Now  nnnnn AxAAx   Also nAx . Therefore, )(),( nn Axxd  . Since ( ) 0→nA , 

0),( →nxxd  as →n . That is,  xxn → as →n . Hence the Cauchy sequence  nx  

converges to Xx . As  nx  is arbitrary it follows that every Cauchy sequence in ( )dX ,  

converges. Hence ( )dX ,  is complete metric space. 

 

INSTRUCTION FOR STUDENTS : 

NOTE:  Definition of Cauchy sequence and theorems related to Cauchy sequence , Definition 

of Complete metric space and examples related to Complete metric spaces and Incomplete 

metric spaces are important . 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

SEMESTER-VI 
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CORE COURSE--C13T 

UNIT-II    (MARKS-14) 

UNIT-II                                                                                        Dr. Pradip Kumar Gain 

Syllabus for Unit-II : Continuity: Continuous mappings,  Sequential criterion 

and other characterizations of continuity, Uniform continuity, 

Connectedness: Connected subsets of R . Compactness: Sequential 

compactness, Heine-Borel property, totally bounded spaces, finite 

intersection property(FIP), continuous functions on compact sets. 

Homeomorphism. Contraction mappings, Banach fixed point theorem and its 

applications to ordinary differential equations.   

 

Functions/Mappings  

DEFINITION : Let X and Y be two non-empty sets. If there is a rule of correspondence 

f which corresponds each element Xx a unique element Yy , then f is said to be a 

function or mapping or a map from X to Y  or f  maps X  into Y .  

In symbol we write YXf →: . In such a case the set X  is called the Domain of f and the 

set Y is called Codomain of f . If f relates Xx  with Yy  , we write )(xfy = . Here x  

is called preimage of y under f and y  is called image of x under f . 

Continuous mappings  

DEFINITION :  Let ( )dX ,  and ( )dY ,  be two metric spaces. A function ),(),(: dYdXf → is 

said to be continuous at a point Xa , if and only if for all 0 , chosen arbitrarily, there 



exists a )0( ( depending on   and a ) such that  ))(),((),( afxfdaxd . That is, 

)),(()(),( afSxfaSx YX  . 

The function f is said to be continuous on ( )dX ,  if and only if it is continuous at each point 

of X . 

REMARKS : It is clear that a function ),(),(: dYdXf → is continuous at a point Xa , if 

and only if for all 0 , chosen arbitrarily, there exists a )0( ( depending on   and a ) 

such that )),(()),(( afSaSf YX  . 

 

Sequential criterion of continuity 

THEOREM 2.1: Let ( )dX ,  and ( )dY ,  be two metric spaces. A function 

),(),(: dYdXf → is said to be continuous at a point Xx , if and only if for all 

sequences  nx  of elements of X converging to the point x  in ( )dX , , the sequences 

 )( nxf  of elements of Y converge to )(xf  in ( )dY , . 

 

Proof :                                             The condition is necessary 

Let us suppose that the function ),(),(: dYdXf →  is continuous at a point Xx . We 

shall show that )()( xfxfxx nn →→  as →n . Let 0 , be arbitrarily chosen. Since 

f  is continuous at the point x , there exists a )0(  such that 

 ))(),((),( xfxfdxxd nn . Since xxn →  as →n in ( )dX , , corresponding to  

)0(  there exists a natural number m  depending on   such that  ),( xxdmn n . 

Combining the two results above we conclude that  ))(),(( xfxfdmn n , where m  

is a natural number depending on  and hence dependent on 0 . This implies  )( nxf  

converges to )(xf  in ( )dY , . 

The condition is sufficient 

We shall show that if for all sequences  nx  converging to the point x  in ( )dX ,  the 

corresponding sequences  )( nxf  converge to )(xf  in ( )dY , , then f  is continuous at the 

point x . If possible let f  is not continuous at the point x . Then there exists atleast one 

0  such that for all )0(   ),( xxd  but  ))(),(( xfxfd for at least one Xx  . 

Let us consider a sequence of s' given by 
n

1
=  for all n . So, corresponding to each 

natural number n , there exists Xx n such that 
n

xxd n

1
),(   but  ))(),(( xfxfd . This 

implies )( nxf does not tend to )(xf  in ( )dY ,  although xxn →  as →n in ( )dX , , which 

is a contradiction to our hypothesis. Hence f  must be continuous at the point x . 



REMARKS : The above theorem shows that convergence of sequence of points remains 

preserved under a continuous map. 

 

From the above theorem the following theorem follows: 

 

THEOREM 2.2 : Let ( )dX ,  and ( )dY ,  be two metric spaces. A function 

),(),(: dYdXf → is continuous if and only if for any Xx and for all sequences  nx  

X converging to x  in ( )dX , , the sequences  )( nxf  converge to )(xf  in ( )dY , . 

  

Other characterizations of continuity : 
THEOREM 2.3: Let ( )dX ,  and ( )dY ,  be two metric spaces. A function 

),(),(: dYdXf → is continuous if and only if for any open set G in ( )dY , , )(1 Gf − is 

open in ( )dX , . 

Proof : Let us assume ),(),(: dYdXf →  is continuous and a set G  is open in ( )dY , . We 

shall show that its inverse image )(1 Gf −  is open in ( )dX , . If =GXf )( , then 

=− )(1 Gf  and remains nothing to prove. Let GXf )( , then − )(1 Gf .                 

So, there exists atleast one )(1 Gfx − . This implies Gxf )( . Since G  is open              

)(xf  is an interior point of the set G . So, we can find an 0 such that GxfSY )),((  .                

Since f  is continuous at the point x , there exists a )0(  such that 

 ))(),((),( xfxfdxxd . That is, )),(()(),( xfSxfxSx YX  .                 

That is, GxfSxSf YX  )),(()),((  . That is, )(),( 1 GfxSx X

− . Thus x  is                       

an interior point of the set )(1 Gf −  in ( )dX , . Since )(1 Gfx − is arbitrarily chosen it 

follows that )(1 Gf − is open in ( )dX , . 

Conversely, we assume that the inverse image of every open set G  in ( )dY ,  is open in 

( )dX , . We shall show that f  is continuous. We choose any Xx , then )(xf is        

uniquely determined. For 0  chosen arbitrarily, )),(( xfSY  is an open set  in ( )dY , . By 

proposition ))),(((1 xfSf Y

−  is open in ( )dX , . Now, ))),(((1 xfSfx Y

− . So, there exists 

a )0(  such that  ))),(((),( 1 xfSfxSx YX

− . This implies, 

))),((()),(( xfSxSf YX  . That is,  ))(),((),( xfxfdxxd  where )0(  

depends on 0 . Consequently, f  is continuous at x  in ( )dX , . Since x  is chosen 

arbitrarily , f  is continuous. 

THEOREM 2.4: Let ( )dX ,  and ( )dY ,  be two metric spaces. A function 

),(),(: dYdXf → is continuous if and only if for any closed set F in ( )dY , , )(1 Ff − is 

closed in ( )dX , . 



Proof : Let us assume ),(),(: dYdXf →  is continuous and a set F  is closed in ( )dY , . So, 

FY \ is open in ( )dY ,  and therefore, )\(1 FYf −  is open in ( )dX ,  (since f  is continuous ). 

Now, )\(\)( 11 FYfXFf −− =  

          )\()(\ 11 FYfFfX −− = . So, )(\ 1 FfX −  is open in ( )dX , . Consequently, 

)(1 Ff −  is closed in ( )dX , . 

Conversely, we assume that for all sets F closed in ( )dY , , )(1 Ff − is closed in ( )dX , . We 

shall that  f  is continuous. Let G be any open set in ( )dY , . GY \  is closed in ( )dY ,  hence 

)\(1 GYf −  is closed in ( )dX , .   Since )(\)\( 11 GfXGYf −− = , it follows that )(\ 1 GfX −  is  

Closed in ( )dX , . That is, )(1 Gf −  is open in ( )dX , . Therefore, f  is continuous. 

THEOREM 2.5: Let ( )dX ,  and ( )dY ,  be two metric spaces. A function 

),(),(: dYdXf → is continuous if and only if for any set XA  , ))(()( AfClClAf  . 

THEOREM 2.6: Let ( )dX ,  and ( )dY ,  be two metric spaces. A function 

),(),(: dYdXf → is continuous if and only if for any set XA  ,   )()( 11 ClBfBfCl −−  .  

 

Uniform continuity 

 DEFINITION : Let ( )dX ,  and ( )dY ,  be two metric spaces. A function ),(),(: dYdXf → is 

said to be uniformly continuous on ( )dX ,  if and only if corresponding to 0 , chosen 

arbitrarily, there exists a )0( ( depending on alone) such that 

 ))(),((),( 2121 xfxfdxxd  Xxx  21,  

THEOREM 2.7: Let ( )dX ,  and ( )dY ,  be two metric spaces and a function 

),(),(: dYdXf → is a uniformly continuous function. If  nx is a Cauchy sequence in 

( )dX , then  )( nxf  is a Cauchy sequence in ( )dY , . 

Proof : Let 0 , be arbitrarily chosen. Since , f  is uniformly continuous in ( )dX , , there 

exists a )0( ( depending on alone) such that  ))(),((),( 2121 xfxfdxxd  

Xxx  21, ………………..(1). Since  nx is a Cauchy sequence in ( )dX , , corresponding to 

)0(  there exists a positive integer )(= mm  such that  + ),( pnn xxdmn , for all 

p ……………………….(2). Combining (1) &(2) we get, mn for all  + ),(, pnn xxdp  

 + ))(),(( pnn xfxfd . This implies that  )( nxf  is a Cauchy sequence in ( )dY , . 

 



Examples of continuous functions: 

EXAMPLES 2.1: Show that the function 
x

xf
1

)( = mapping the real line into itself is 

continuous everywhere on the real line except at the origin.  

EXAMPLES 2.2: Show that the function 
x

xf
1

)( = mapping the real line into itself given by 





−


=

otherwisex

Qxx
xf

,1

,
)(  continuous only at the point 

2

1
. 

EXAMPLES 2.3: Let ( )dX ,  be a metric space and A and B are two non-empty disjoint 

closed sets in X . Prove that there exists a continuous function RXf →: such that 





−


=

Bx

Ax
xf

,1

,1
)( . 

 

CONNECTEDNESS 

DEFINITION : Let ( )dX ,  be a metric space and A and B are two subsets of X . The sets 

A and B are said to be separated in if and only if neither has a point in common with the 

closure of another. That is, = )(BClA , = BACl )( . 

These two conditions can be expressed by     = BAClBClA )()( . This is known as 

“Hausdorff-Lennes condition”.  

 

NOTE : Two sets A and B are may be separated in one metric space but not in other. 

For example, let us consider the set R of all real numbers along usual metric. Then let us 

consider two sets  0 and ( )1,0 . Now,   ( )       == 01,00)1,0(0 Cl . 

Again, let us consider the set R of all real numbers along with discrete metric. Let us 

consider two sets  0 and ( )1,0 . The open sphere 








2

1
,0S with centre 0 and radius 

2

1
contains no point of the set ( )1,0 . Therefore, in this metric space 

 ( ) ( )   ( ) == 1,001,00Cl ,   ( )( )   ( ) == 1,001,00 Cl  and hence the sets  0 and 

( )1,0  are separated in this metric space. 

 

THEOREM 2.8: Let a set G is open in a metric space ( )dX , . If G is expressed as the union 

of two non-empty separated sets A and B . Then both the sets A and B are open in 

( )dX , . 

 



Disconnected Spaces and Disconnected Sets: 
 

DEFINITION : A metric space ( )dX ,  is said to be  disconnected if and only if it can be 

expressed as the union of two non-empty separated sets. That is, BAX = where 

  BA ,  and = )(BClA , = BACl )( . 

By theorem 2.8 , both the sets A and B are open in ( )dX , . 

 

RESULT : A metric space ( )dX ,  is disconnected if and only if it can be expressed as the 

union of two non-empty disjoint open sets. 

RESULT : A metric space ( )dX ,  is disconnected if and only if it can be expressed as the 

union of two non-empty disjoint closed sets. 

 

DEFINITION : A non-empty subset A of a metric space ( )dX ,  is disconnected if and only if it 

can be expressed as the union of two non-empty separated sets. That is, 
21 AAA = where 

  21 , AA  and = )( 21 AClA , = 21)( AACl . 

 

THEOREM 2.8: Let ( )dX ,  be a metric space. Then the following conditions are equivalent :         

(i) ( )dX ,  is disconnected. 

(ii) X can be expressed as the union of two non-empty disjoint closed sets in ( )dX , . 

(iii) X can be expressed as the union of two non-empty disjoint open sets in ( )dX , . 

(iv) there exists a non-empty proper subset of X , which is both open and closed in the 

metric space ( )dX , . 

 

 

Connected Spaces and Connected Sets: 
 

DEFINITION : A metric space ( )dX ,  is said to be  connected if and only if X is not  

expressible  as the union of two non-empty separated sets in ( )dX , . In other words, ( )dX ,  

is connected if and only if X is not disconnected. 

 

DEFINITION : A non-empty subset A of a metric space ( )dX ,  is connected if and only if it 

cannot be expressed as the union of two non-empty separated sets. 

 

THEOREM 2.9:  A metric space ( )dX ,  is connected if and only if X and  are the only sets 

which are both open and closed in ( )dX , . 

Proof : Let X and  are the only sets which are both open and closed in ( )dX , . That is, X is 

the only non-empty set which is both open and closed in ( )dX , . We shall prove that ( )dX ,  



is connected. If possible, let X  is disconnected. The there exists a disconnection ),( BA of 

( )dX , . Obviously, both the sets A and B are non-empty. Since X is open, we find both the 

sets A and B are open. Similarly, both the sets A and B are closed. Thus there exists a non-

empty proper subset A of X  which is both open and closed in ( )dX , . This is a 

contradiction to our hypothesis that X is the only non-empty set which is both open and 

closed in ( )dX , . Therefore, ( )dX ,  is connected. 

Conversely, let ( )dX ,  is connected. We shall show that X is the only non-empty set which 

is both open and closed in ( )dX , . If possible, let there exists a non-empty proper subset A  

of X  which is both open and closed in ( )dX , . Then its complement AXAC \=  is non-

empty. Since A  is both open and closed CA  is both closed and open. Therefore, ( )dX ,  is 

disconnected with a disconnection ),( CAA , which contradicts our assumption. Therefore, 

X is the only non-empty set which is both open and closed in ( )dX , . 

THEOREM 2.10:  If two connected sets are not separated, their union is connected. 

THEOREM 2.11:  In a metric space the union of two non-disjoint connected sets is 

connected. 

THEOREM 2.12: If every two points of a set A  in a metric space ( )dX ,  are contained in 

some connected subset of A , then A  is connected set. 

DEFINITION : Let ( )dX ,  be a metric space. If corresponding to every pair a ,b of distinct 

points of X , there exist separated sets A  and B  in ( )dX ,  with Aa and Bb , then the 

space ( )dX ,  is said to be totally disconnected. 

 

 

 

CONNECTED SETS IN THE REAL LINE : 
It is clear that like other spaces, the null set   and singleton sets are connected in the real 

line. 

 

THEOREM 2.13: A set RA  with atleast two points is connected in the real line if and 

only if A  is an interval. 

Proof : Let us assume that A  is an interval. We shall show that A  is connected. Let us 

assume, if possible, A  is disconnected. Then there exist two non-empty sets B and C both 

open and closed in the subspace A such that CBA = . Since B and C  are non-empty 

disjoint sets we choose any Bb and Cc . Since the sets B and C  are disjoint, the points 

b and c are distinct. That is, cb  . Let cb  . Since A  I s an interval and Acb , it follows 

that Axcxb  . So,   CBAcb =, . Also,   cby , either By or Cy but 

not both. Let   BcbE = , .  Now Eb . Since E is non-empty and bounded above E  has a 

finite supremum. Let Eu sup= . Then cub  . Since Eu sup= , no real number less than 



u  can be an upper bound of the  set E . Consequently, corresponding to each )0( , 

however small, there exists a Ev such that uvu − . Thus every neighbourhood 

( ),uS  ofu in the real line contains a point of E . Since BE  , we conclude that every 

neighbourhood of u  contains a point of B different from u . So u is a point of accumulation 

of the set B . Since B is closed, we must have Bu . Also Cu ( Since the sets B and C  are 

disjoint). Hence  cu  . As cub  , it follows that cu  . Again for each )0( , however 

small, Cu + , if cu + . This implies every neighbourhood ( ),uS  of the point u in the 

real line contains some point of C  different from u . Therefore, u is a point of accumulation 

of the set C  in the real line. Since the set C is closed, we also have Cu . Thus CBu  , 

which contradicts that the sets B and C  are disjoint. Therefore, A  must be connected. 

Conversely, if possible, let A  is a connected subset of R containing at least two points but 

A  is not an interval. Then there exist three points zyx ,, such that Azx , , Ay where 

zyx  . Now, the sets ( )yA ,1 −=  and ( )= ,2 yA  re separated open sets in Euclidean 

line. Let AAB = 11 , AAB = 22 . Then 11 AB   , 22 AB   and consequently 
1B  and 2B  

are separated. As 1Bx  , 2Bz  both 
1B  and 2B  are non-empty. Also 21 BBA =  Hence 

A  has a disconnection ( )21, BB . This is a contradiction to the fact that A  is a connected set. 

Thus A  is an interval. 

 

EXAMPLE : Show that the set R  of all real numbers is connected in the real line. 

 

SOLUTION : If possible, let the set R is disconnected in the real line and ( )BA,  is a 

disconnection of R . Then A , B are non-empty separated stes in thr real line which are 

both open and closed. Since A , B are non-empty, there exists at least one Aa 1  and 

Bb 1 . Since A  and B are disjoint, 11 ba  . So either 11 ba  or 11 ba  . Without loss of 

generality, let 11 ba  . Let  111 ,baI = . Then 0111 −= abI . Now, R
ba


+

2

11 . Since 

BAR = , 
2

11 ba +
 belongs either to A or to B or belong to both. Also since, = BA , 

2

11 ba +
 can’t belong to both the sets A  and B . If A

ba


+

2

11 , we shall consider the 

interval 






 +
1

11 ,
2

b
ba

. Let   






 +
= 1

11
22 ,

2
, b

ba
ba . That is, 

2

11
2

ba
a

+
= and 12 bb = .  

If B
ba


+

2

11 , we shall consider the interval 






 +

2
, 11

1

ba
a . Let   







 +
=

2
,, 11

122

ba
aba . That 

is, 12 aa =  and 
2

11
2

ba
b

+
= . Let  222 ,baI = . Then clearly, 12 II  and 

2

)( 11
222

ab
abI

−
=−= . If we repeat this process, we must find intervals ..,.........,, 543 III  



and so on. In every case, we select the end points na and nb  such that Aan   and Bbn  . 

Thus we get a sequence  nI  of bounded closed intervals, where  nnn baI ,= . Also 

nn II +1  for all n . And, 0)(
2

1
)( 111

→−=−=
−

ababI
nnnn as →n . Thus   nI  forms 

a nest of closed intervals with diameter tending towards zero in the real line. Nested 

Interval Theorem says that there exists one and only one point   nIc n : . It can 

easily be seen that both the sequences  na  and  nb  are convergent in the real line and 

both converges to c . Since   Aan  , c is a point of accumulation of the set A  in the real 

line. As A  is closed, Ac . Similarly, Bc . Thus  BA , which contradicts the 

disconnection of the real line. Therefore, the set R  of all real numbers is connected in the 

real line. 

EXAMPLE : Let ( )dX ,  be a connected metric space and ),(),(: dYdXf → . Prove that 

)(Xf is a connected subset of Y .  

SOLUTION : If possible, let the set )(Xf is not connected in the metric space  ),( dY  . Then 

we can find a non-empty proper subset H of )(Xf which is both open and closed in the 

subspace )(Xf . Since H is open and f is continuous, )(1 Hf − is open in ( )dX , . Again 

since H is closed and f is continuous, )(1 Hf − is closed in ( )dX , .  

H is proper subset of )(Xf   −− )()\)((\)( 11 HfHXffHXf . Thus 

)(1 Hf − is a non-empty proper subset of X which is both open and closed in ( )dX , . So 

( )dX ,  not connected, a contradiction. Hence )(Xf must be connected in the metric space  

),( dY  . 

NOTE : In case ),(),(: dYdXf → is an onto continuous map and X  is connected, then 

)(XfY =  is connected. 

 

 

COMPACTNESS 
 

DEFINITION : Let X  be a non-empty set. A family  =  :AA of subsets of X is said to 

be a cover of X if and only if   =  :AX , where   is an index set. 

* In such a case, we say that the family  =  :AA  covers X . 

DEFINITION : Let Y  be a non-empty subset of the set X . A family  =  :BB of 

subsets of X is said to be a cover of Y if and only if     :BY , where   is an 

index set. 

* In such a case, we say that the family  =  :BB  covers Y . 

* If there exists a subfamily B of B which also covers Y , we say that B is a subcover of B . 



*A cover is said to be a finite cover(respt. Countable) if it contains finite ( respt. Countable) 

number of sets.  

* If set in the family  =  :AA are all open sets in a metric space ( )dX , , A  is said to 

be an open cover of X  in the metric space ( )dX , .  

NOTE : When a family of subsets of X  in a metric space ( )dX ,  covers X , the metric 

d plays no role. But in order to be an open cover of X for a family of subsets of X , d must 

have role because, openness of a set depends on the underlying metric. 

EXAMPLE : Show that the family ( ) −== nnnAA n :, , of bounded open intervals, is an 

open cover of R . 

EXAMPLE : Show that each one of the following families is an open cover of the real line: 

(i)  ( ) RxxxA −= :,1  

(ii) ( ) += xxxA :1,2  

(iii) ( ) +−= nnnA :1,13  

DEFINITION : A metric space ( )dX ,  is said to be a Lindel o f space if and only if every open 

cover of X  in the metric space ( )dX , admits of a countable subcover. 

 

THEOREM 2.14: ( Lindel o f Covering Theorem)  

In the real line every open cover of a set has a countable subcover. 

 

DEFINITION( Compact Space) : A metric space ( )dX ,  is said to be a compact metric space if 

and only if every open cover of X  in the metric space ( )dX , admits of a finite subcover. 

DEFINITION( Heine-Borel Property) : A metric space ( )dX ,  is said to satisfy Heine-Borel 

Property if and only if every open cover of X  in the metric space ( )dX , admits of a finite 

subcover. 

DEFINITION( Compact Set) : Let Y be a non-empty set in a metric space ( )dX , . Then Y is 

said to be a compact set if and only if every open cover of Y in the metric space ( )dX , has a 

finite subcover. 

NOTE : It is to be noted that by means of open sets, we consider those sets which are open 

in the metric space ( )dX , . 

 

PROPERTIES OF COMPACT SPACES AND COMPACT SETS : 

 

THEOREM 2.15: Every closed subset of a compact metric space is compact 

 

NOTE : If in any metric space we can find at least one closed set which is not compact, we 

can assert that the space is not compact.  

 

EXAMPLE : Show that the real line is not compact.  



SOLUTION : Let us consider the set Z of integers. We know that in the real line Z  is closed. 

The family ( ) −= nnnA :, is an open cover of Z  in the real line since 

( ) −= :,nnRZ . Since ( ) −= nnnA :, (cover of Z ) has no finite subcover, 

the set Z  is not compact. So Z  is closed but not compact in the real line. Consequently, the 

real line is not compact.  

THEOREM 2.16: In any metric space ( )dX , every compact set is closed . 

Combining the theorem 2.15 & theorem 2.16, we get the following theorem: 

THEOREM 2.17: A subset F of a compact metric space ( )dX , is compact if and only if it is 

closed. 

THEOREM 2.18: Every compact subset of a metric space is bounded. 

 

HEINE BOREL THEOREM 
 

THEOREM 2.19: ( Heine Borel Theorem ) Every closed and bounded set in the real line is 

compact.  

Converse of Heine Borel Theorem : Every compact set in the real line is both closed and 

bounded. 

 

FINITE INTERSECTION PROPERTY 
A family  =  :AA of non-empty sets is said to posses finite intersection property if 

and only if every finite subfamily of  =  :AA has non-empty intersection.  

That is, for any arbitrary finite collection  
n

AAAA  .,,.........,,
321

 of members of 

 =  :AA  we have,    = niA
i

,......,3,2,1:  

EXAMPLE : The collection ( ) −= nnnA :, of open intervals satisfy finite intersection 

property. If we consider any finite collection ( ) ( ) ( ) ( ) 
pp nnnnnnnn ,,.......,,,,,, 332211 −−−− of 

open intervals in R then ( )  ( )  −==− nnprnn rr ,,.......,3,2,1:, where 

 
pnnnn ,,.........,min 21= . 

EXAMPLE : The collection ( ) ZnnnB +−= :1,1 of open intervals does not satisfy finite 

intersection property. If we consider the finite collection ( ) ( ) 5,3,3,1  of B and we find 

( ) ( ) = 5,33,1  

THEOREM 2.19: A metric space ( )dX ,  is compact if and only if every infinite family of non-

empty closed sets in ( )dX ,  with finite intersection property has non-empty intersection. 

Proof :  

 

 

 



CONTINUITY AND COMPACTNESS : 
 

THEOREM 2.20:  Continuous image of a compact metric space is compact. 

Proof : Let ( )dX ,  be a compact metric space and f is a continuous mapping from ( )dX ,  

into another metric space ( )dY , . If YXfY = )( , then we are to prove that the setY  is a 

compact subset of ( )dY , . Let  =  :AA  be any open cover of Y  in ( )dY , . We are 

to show that it has a finite subcover. By proposition  =  :AY . Hence we get, 

    === −−−   :)(:)( 111 AfAfYfX ……………………………………………..(1) 

Since for all  , A is open in ( )dY ,  and f is continuous, it follows that )(1

Af −  is 

open in ( )dX , , for all  . Then from (1) it follows that  =  :)(1 Af is an open cover 

of ( )dX , . Since ( )dX ,  is compact, it has a finite subcover, say, 

 ==

iniAf
i

 :,.....,3,2,1:)(1 . We show shall that = iniA
i

 :,.....,3,2,1:  is an 

open cover Y  in ( )dY , . Let Yy  be arbitrarily chosen. Then there exists at least one 

Xx such that yxf =)( . Since  ==

iniAf
i

 :,.....,3,2,1:)(1 is an open cover of 

( )dX , , for some integer )1( nii  , )(1

i
Afx 

− . Hence 
i

Axfy = )( . Therefore, 

 == =

iniAfY
i

 :,.....,3,2,1:)(1 . Consequently, Y  is a compact set in ( )dY , .  

Therefore, continuous image of a compact metric space is compact. 

NOTE : In case ),(),(: dYdXf → is an onto continuous map and ( )dX ,  is compact, then 

( )dY ,  is also compact. 

NOTE : If ),(),(: dYdXf → is continuous map and XA   is a compact set in ( )dX , , 

then YAf )( is also compact in ( )dY , . 

 

SEQUENTIALLY COMPACT SPACE 
 

DEFINITION : A metric space ( )dX ,  is said to be sequentially compact if and only if every 

sequence in X has a convergent subsequence. 

DEFINITION : A non-empty set XA   is said to be sequentially compact if and only if every 

sequence in A  has a convergent subsequence. 

 

EXAMPLE : In the real line the set R of all real numbers is not sequentially compact.  

SOLUTION : Let us consider the sequence  nx in R defined by nxn =  for all n . Clearly, 

 nx  has no convergent subsequence. Hence R is not sequentially compact.  

EXAMPLE : In the metric space R with usual metric, the set ( ) R1,0  is not sequentially 

compact.  



SOLUTION : Let us consider the sequence  nx in R defined by 
n

xn

1
=  for all n .  nx  

has no subsequence which converges to any point in ( )1,0 . Hence ( )1,0 is not sequentially 

compact set. 

NOTE :  However, in the real line the closed interval  1,0 is sequentially compact set. 

 

PROPERTIES OF SEQUENTIALLY COMPACT SETS 
 

THEOREM 2.21: In a metric space a sequentially compact set is both bounded and closed. 

 

THEOREM 2.22: A sequentially compact metric space is complete. 

Proof : Let ( )dX ,  be a sequentially compact metric space. In order to prove the theorem it 

is sufficient to show that any Cauchy sequence nx  in ( )dX , converges in X . Since  nx  is 

a Cauchy sequence in ( )dX , , corresponding to )0( , chosen arbitrarily, there exists a 

positive integer 
1N , depending on )0( , such that ( ) + npn xxd , , for all p and 

1Nn  . Since the metric space ( )dX , is sequentially compact, the sequence nx must have 

a subsequence which converges in X . Let the subsequence be  
knx and Xxx

kn → as 

→kn . So, there exists a positive integer 
2N , depending on )0( , such that 

( ) xxd
kn , , whenever 2Nnk  . Let  21,max NNN = . Then for all Nnnk  we get, 

( ) ( ) ( )  2,,, =++ xxdxxdxxd
kk nnnn

. Therefore, the sequence nx  converges to 

Xx . Consequently, the metric space ( )dX ,  is complete. 

 

THEOREM 2.23: Every compact metric space is sequentially compact. 

 

COMPACTNESS AND TOTAL BOUNDEDNESS 
 

DEFINITION :  Let ( )dX , be a metric space and  be an arbitrarily chosen positive quantity. 

A non-empty subset A  of X is said to be an net− of ( )dX , , if the set of all open spheres 

of radius   with centres in A  covers X . 

This implies for any Xx , we can find at least one Aa , such that ),( aSx , that is, 

),( xad . 

 

EXAMPLE : In the real line the set Z of all integers is an net−1  but not a net−
2

1
. 

DEFINITION :  Let ( )dX , be a metric space. A non-empty subset A  of X is said to be totally 

bounded if and only if for every )0( , the set A  has a finite net− . 

This implies for any )0( , a finite collection of open spheres of radius  covers A . 



THEOREM 2.24: A metric space ( )dX ,  is totally bounded if and only if every sequence in 

X has a Cauchy subsequence. 

 

THEOREM 2.25: A metric space ( )dX ,  is sequentially compact if and only if it is complete 

and totally bounded.  

Proof : Let the metric space ( )dX ,  is complete and totally bounded. Since ( )dX , is  totally 

bounded, every sequence  nx  in ( )dX , has a Cauchy subsequence ny . Since ( )dX ,  is 

complete, any Cauchy sequence ny  is convergent. So every sequence  nx  in ( )dX , has a 

convergent subsequence. Therefore, the metric space ( )dX ,  is sequentially compact. 

Conversely, let the metric space ( )dX ,  is sequentially compact. Then every sequence  nx  

in ( )dX ,  has a convergent subsequence ny . Since the sequence ny  satisfies Cauchy 

property, by theorem 2.24,  it follows that ( )dX ,  is totally bounded.  

Moreover, as the metric space ( )dX ,  is sequentially compact, every sequence  nx  in 

( )dX , has a convergent subsequence. Specifically, every Cauchy sequence  nx  in 

( )dX , has a convergent subsequence. We know that a Cauchy sequence is convergent if 

and only if it has a convergent subsequence. Thus every Cauchy sequence  in ( )dX ,  is 

convergent. Hence the metric space ( )dX ,  is complete. 

COROLLARY : Let ( )dX ,  be a  complete metric space. Then a non-empty subset A  of X  is 

compact if and only if A  is totally bounded in ( )dX , . 

 

THEOREM 2.26: Every sequentially compact metric space is compact. 

 


